24014 measured reflections

 $R_{\rm int} = 0.098$

refinement

 $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

8570 independent reflections

4686 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,5'-Diamino-2,2'-bipyridin-1,1'-diium bis(5,5'-diamino-2,2'-bipyridin-1-ium) tetrakis(rac-1,1'-binaphthalene-2,2'-diyl phosphate) hexahydrate: a twodimensional supramolecular hydrogenbonded network

Barbara Wisser and Christoph Janiak*

Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany Correspondence e-mail: janiak@uni-freiburg.de

Received 2 April 2007; accepted 3 May 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.138; data-to-parameter ratio = 12.1.

In the title compound, $C_{10}H_{12}N_4^{2+} \cdot 2C_{10}H_{11}N_4^{+} \cdot 4C_{20}H_{12}O_4P^{-}$. 6H₂O, the 1,1'-binaphthalene-2,2'-diyl phosphate anion and 5,5'-diamino-2,2'-bipyridine as hydrogen-acceptor and -donor building blocks, respectively, are combined in a supramolecular two-dimensional hydrogen-bonding network of one centrosymmetric diprotonated diaminobipyridin-1,1'-ium dication, two monoprotonated diaminobipyridinium cations, four phosphate counter-anions and six water molecules of crystallization. Protonation of diaminobipyridine to the bipyridinium mono- or dication enhances the hydrogen bonding due to the primary electrostatic attraction with the anion. The packing can be rationalized by a separation of the hydrophobic binaphthyl backbone from the hydrophilic $(RO)_2PO_2^{-}$ phosphate groups, bipyridinium cation and water components. The binaphthyl tail-to-tail packing in the hydrophobic lamellae as well as the diaminobipyridinium packing is governed by $\pi - \pi$ and $C - H \cdots \pi$ interactions.

Related literature

For related literature, see: Dorn et al. (2005); Dorn et al. (2006); Janiak, Deblon, Wu et al. (1999); Janiak, Deblon & Wu (1999); Janiak (2000); Nishio (2004); Yang et al. (2003); Yang et al. (2004).

Experimental

Crystal data	
$C_{10}H_{12}N_4^{2+} \cdot 2C_{10}H_{11}N_4^{+} \cdot -$	$\beta = 76.232 \ (11)^{\circ}$
$4C_{20}H_{12}O_4P^-\cdot 6H_2O$	$\gamma = 85.571 \ (10)^{\circ}$
$M_r = 2059.86$	V = 2402.5 (7) Å ³
Triclinic, P1	Z = 1
a = 9.7001 (16) Å	Mo $K\alpha$ radiation
b = 14.102 (2) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 18.244 (3) Å	T = 203 (2) K
$\alpha = 82.940 \ (11)^{\circ}$	$0.56 \times 0.04 \times 0.03 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.914, T_{\max} = 0.996$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.056 \\ wR(F^2) &= 0.138 \end{split}$$
S = 0.998570 reflections 709 parameters 2 restraints

Table 1

Hydrogen-bond geometry (Å, °).						
$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
N1-H1···O2	0.92 (4)	2.33 (4)	3.172 (4)	151 (3)		
$N3 - H3B \cdot \cdot \cdot O8^{i}$	0.90 (4)	1.97 (4)	2.830 (4)	161 (4)		
$N3-H3C \cdot \cdot \cdot O10^{ii}$	0.96 (4)	2.08 (5)	3.016 (5)	164 (4)		
$N4 - H4C \cdot \cdot \cdot O9$	0.97 (3)	2.18 (4)	3.124 (5)	163 (4)		
$N5-H5\cdots O4^{iii}$	0.98 (4)	1.61 (4)	2.581 (4)	167 (3)		
$N6-H6B\cdotsO10^{iv}$	0.96 (4)	2.05 (4)	3.006 (5)	173 (4)		
N6−H6C···O11	0.81 (5)	2.34 (5)	3.078 (6)	153 (5)		
$O9-H9B\cdots O3^{v}$	0.85 (4)	2.06 (4)	2.875 (4)	159 (4)		
O9−H9C···O7	0.88 (5)	1.89 (5)	2.753 (4)	164 (4)		
O10−H10A···O11 ^{vi}	0.96 (4)	1.85 (4)	2.787 (4)	166 (4)		
O10−H10B···O9	0.93 (5)	1.98 (5)	2.874 (4)	162 (4)		
$O11 - H11B \cdot \cdot \cdot O3^{v}$	0.91 (6)	1.99 (5)	2.817 (4)	151 (5)		
O11−H11A···O7	0.78 (5)	2.44 (5)	3.046 (4)	136 (5)		
$O11-H11A\cdots O8$	0.78 (5)	2.59 (6)	3.264 (5)	147 (6)		

Symmetry codes: (i) x + 1, y - 1, z; (ii) x, y - 1, z; (iii) -x, -y + 1, -z; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z; (vi) -x + 1, -y + 2, -z.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

organic compounds

DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: *SHELXL97*.

Support through grant Ja466/14-1 is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2222).

References

Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Crystal Impact (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.

- Dorn, T., Chamayou, A.-C. & Janiak, C. (2006). New J. Chem. 30, 156–167.
- Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Janiak, C., Deblon, S. & Wu, H.-P. (1999). Synth. Commun. 29, 3341-3352.
- Janiak, C., Deblon, S., Wu, H.-P., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. pp. 1507–1521.
- Nishio, M. (2004). CrystEngComm, 6, 130-158.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, X.-J., Wu, B., Janiak, C., Sun, W.-H. & Hu, H.-M. (2004). Z. Anorg. Allg. Chem. 630, 1564–1572.
- Yang, X.-J., Wu, B., Sun, W.-H. & Janiak, C. (2003). Inorg. Chim. Acta, 343, 366–372.

Acta Cryst. (2007). E63, o2871-o2872 [doi:10.1107/S1600536807021794]

5,5'-Diamino-2,2'-bipyridin-1,1'-diium bis(5,5'-diamino-2,2'-bipyridin-1-ium) tetrakis(*rac*-1,1'-binaphthalene-2,2'-diyl phosphate) hexahydrate: a two-dimensional supramolecular hydrogenbonded network

B. Wisser and C. Janiak

Comment

The reaction and crystallization conditions combine one diprotonated diaminobipyridin-1,1'-ium dication with two monoprotonated diaminobipyridinium cations in a network with four phosphate counteranions and six water molecules of crystallization (Dorn *et al.*, 2005; Dorn *et al.*, 2006; Janiak, Deblon & Wu, 1999; Yang *et al.*, 2003; Yang *et al.*, 2004). The dication sits on an inversion center which bisects the central C–C-bond and relates the two pyridinium halves of the molecule. The packing in **1** can be rationalized by a separation of the hydrophobic binaphthyl backbone from the hydrophilic (RO)₂PO₂⁻ phosphate groups, bipyridinium cation and hydrate components, as seen before (Dorn *et al.*, 2006). Fig. 1 shows a projection of the unit cell crystal packing to illustrate the lamellar or layer-like arrangement of the hydrophobic and hydrophilic regions. The latter are also highlighted by the hydrogen-bonding network as red dashes. Details of part of the hydrogen-bonding network between diaminobipyrdinium, phosphate and crystal water are visualized in Fig. 2 (see Table for bond distances and angles). The binaphthyl tail-to-tail packing in the hydrophobic lamellar as well as the diaminobipyridinium packing is governed by π - π and C–H··· π interactions (Dorn *et al.*, 2006; Janiak, 2000; Nishio, 2004).

Experimental

5,5'-Diamino-2,2'-bipyridine (186 mg, 0.10 mmol) (Janiak, Deblon, Wu *et al.*, 1999) was dissolved in 50 ml of hot H₂O. This solution was added to a solution of racemic 1,1'-binaphthalene-2,2'-diyl phosphoric acid (348 mg, 0.10 mmol) (Dorn *et al.*, 2006) in 20 ml of methanol. The solvent was slowly allowed to evaporate. After two weeks yellow needles of **1** were formed and separated by filtration. Crystal yield 334 mg, 65%. Analysis calculated for $C_{110}H_{94}N_{12}O_{22}P_4$ (2058.84): C 64.14, H 4.55, N 8.16%; found: C 63.60, H 4.77, N 8.99%. IR (KBr, v cm⁻¹): 3345, 1636, 1587, 1550, 1507, 1486, 1464, 1328, 1241, 1218, 1156, 1095, 1069, 992, 961, 836, 750, 717, 656, 568, 535; ¹H-NMR (DMSO-d₆): δ 8.03 (d, H5_{phosphate}, ³J_{5,6} = 9.0 Hz), 8.02–7.99 (m, H4_{phosphate}/H6_{bipyridine}), 7.97 (d, H3_{bipyridine}, ³J_{3,4} = 8.9 Hz), 7.46–7.40 (m, H6_{phosphate}/H7_{phosphate}), 7.35–7.27 (m, H8_{phosphate}/H4_{bipyridine}), 7.23 (d, H3_{phosphate}, ³J_{3,4} = 8.1 Hz).

Refinement

The needle morphology of the crystal gave rise to a somewhat high R_{int} and other R values. Yet, structure solution and refinement proceeded without problems. The quality of the data set enabled the localization and refinement of the protic hydrogen atoms.

Hydrogen atoms on carbon were calculated with appropriate riding models (AFIX 43 for aromatic CH, AFIX 13 for CH, AFIX 23 for CH₂, AFIX 33 for CH₃) and $U_{eq}(H) = 1.2 U_{eq}(CH)$ or 1.5 $U_{eq}(CH3)$, respectively.

Hydrogen atoms on N (NH₂ and NH) and O (H₂O) were found from difference Fourier maps and refined with $U_{eq}(H) = 1.5 U_{eq}(N/O)$

Figures

Scheme 1: Molecular composition of (5,5'-diamino-2,2'-bipyridin-1,1'-diium) bis(5,5'-diamino-2,2'-bipyridin-1-ium) tetrakis(rac-1,1'-binaphthalene-2,2'-diyl phosphate) hexahydrate, $(C_{10}H_{12}N_4)(C_{10}H_{11}N_4)_2(C_{20}H_{12}PO_4)_4(H_2O)_6$ **1** with nomenclature numbering scheme.

Fig. 1: Projection of the crystal packing in **1** onto the (0 1 0) plane. Hydrogen bonds are indicated as red dashes.

Fig. 2: Part of the hydrogen-bonding network between diaminobipyrdinium, phosphate and crystal water in 1. Hydrogen bonds are indicated with red dashes (see Table for bond distances and angles). Symmetry code: i = -x, 1 - y, -z; ii = -1 + x, y, z; iii = -x, 2 - y, -z; iv = x, y - 1, z; v = 1 - x, 1 - y, -z;. The naphthyl groups are depicted transparent for clarity. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms with a standard radius of 0.135 Å.

5,5'-Diamino-2,2'-bipyridin-1,1'-dium bis(5,5'-diamino-2,2'-bipyridin-1-ium) tetrakis(*rac*-1,1'-binaphthalene-2,2'-diyl phosphate) hexahydrate

Crystal data

$C_{10}H_{12}N_4{}^{2+}\cdot 2C_{10}H_{11}N_4{}^{+}\cdot 4C_{20}H_{12}O_4P{}^{-}\cdot 6H_2O$	V = 2402.5 (7) Å ³
$M_r = 2059.86$	Z = 1
Triclinic, <i>P</i> T	$F_{000} = 1074$
Hall symbol: -P 1	$D_{\rm x} = 1.424 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.7001 (16) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 14.102 (2) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 18.244 (3) Å	T = 203 (2) K
$\alpha = 82.940 \ (11)^{\circ}$	Needle, yellow
$\beta = 76.232 \ (11)^{\circ}$	$0.56 \times 0.04 \times 0.03 \text{ mm}$
$\gamma = 85.571 \ (10)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer	8570 independent reflections
Radiation source: fine-focus sealed tube	4686 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.098$
T = 203(2) K	$\theta_{\text{max}} = 25.3^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.914, \ T_{\max} = 0.996$	$k = -16 \rightarrow 16$
24014 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.056$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0435P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.138$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 0.99	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
8570 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
709 parameters	Extinction correction: none
2 restraints	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier may	

Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.43917 (11)	0.31213 (7)	0.04758 (5)	0.0382 (3)
01	0.3322 (2)	0.25002 (15)	0.11340 (11)	0.0332 (6)
O2	0.5291 (2)	0.36183 (14)	0.09484 (12)	0.0328 (5)
O3	0.5400 (3)	0.25075 (18)	-0.00114 (13)	0.0533 (7)
O4	0.3487 (3)	0.38558 (18)	0.01291 (14)	0.0542 (7)
C1	0.4313 (4)	0.2395 (2)	0.22255 (17)	0.0287 (8)
C2	0.3948 (4)	0.1947 (2)	0.16755 (17)	0.0296 (8)
C3	0.4198 (4)	0.0964 (2)	0.16155 (18)	0.0361 (9)
H3A	0.3909	0.0683	0.1239	0.043*
C4	0.4864 (4)	0.0423 (2)	0.21105 (18)	0.0361 (9)
H4A	0.5011	-0.0239	0.2081	0.043*
C5	0.5339 (4)	0.0834 (2)	0.26684 (17)	0.0313 (8)
C6	0.6104 (4)	0.0294 (2)	0.3161 (2)	0.0400 (9)
H6A	0.6261	-0.0369	0.3138	0.048*
C7	0.6615 (4)	0.0710 (2)	0.3665 (2)	0.0438 (10)

H7	0.7109	0.0335	0.3991	0.053*
C8	0.6410 (4)	0.1706 (2)	0.3701 (2)	0.0417 (10)
H8	0.6794	0.1998	0.4039	0.050*
C9	0.5654 (4)	0.2245 (2)	0.32452 (18)	0.0348 (9)
H9A	0.5518	0.2907	0.3277	0.042*
C10	0.5068 (4)	0.1834 (2)	0.27248 (17)	0.0281 (8)
C11	0.4023 (4)	0.3453 (2)	0.22337 (18)	0.0299 (8)
C12	0.4491 (4)	0.4038 (2)	0.15860 (18)	0.0306 (8)
C13	0.4266 (4)	0.5036 (2)	0.1525 (2)	0.0359 (9)
H13	0.4587	0.5406	0.1059	0.043*
C14	0.3582 (4)	0.5458 (2)	0.2145 (2)	0.0390 (9)
H14	0.3453	0.6128	0.2113	0.047*
C15	0.3060 (4)	0.4904 (2)	0.28375 (19)	0.0329 (8)
C16	0.2358 (4)	0.5335 (2)	0.3490 (2)	0.0409 (9)
H16	0.2247	0.6005	0.3463	0.049*
C17	0.1837 (4)	0.4805 (2)	0.4158 (2)	0.0437 (10)
H17	0.1380	0.5108	0.4589	0.052*
C18	0.1983 (4)	0.3805 (2)	0.4203 (2)	0.0401 (9)
H18	0.1620	0.3439	0.4666	0.048*
C19	0.2646 (4)	0.3354 (2)	0.35836 (18)	0.0363 (9)
H19	0.2704	0.2682	0.3619	0.044*
C20	0.3246 (4)	0.3891 (2)	0.28876 (18)	0.0311 (8)
P2	0.17925 (11)	0.83695 (6)	0.24285 (5)	0.0371 (3)
05	0.0731 (3)	0.76467 (14)	0.30098 (11)	0.0341 (6)
O6	0.2692 (3)	0.87165 (14)	0.29780 (11)	0.0353 (6)
07	0.2716 (3)	0.77708 (17)	0.18815 (13)	0.0511 (7)
08	0.1033 (3)	0.92259 (17)	0.21483 (16)	0.0634 (8)
C21	0.0630 (4)	0.8089 (2)	0.42500 (17)	0.0284 (8)
C22	-0.0051 (4)	0.7971 (2)	0.36875 (17)	0.0303 (8)
C23	-0.1514 (4)	0.8136 (2)	0.37639 (19)	0.0348 (8)
H23	-0.1935	0.8025	0.3370	0.042*
C24	-0.2323 (4)	0.8456 (2)	0.44066 (19)	0.0370 (9)
H24	-0.3316	0.8521	0.4474	0.044*
C25	-0.1688 (4)	0.8694 (2)	0.49788 (18)	0.0319 (8)
C26	-0.2476 (4)	0.9113 (2)	0.56202 (19)	0.0382 (9)
H26	-0.3466	0.9211	0.5687	0.046*
C27	-0.1836 (4)	0.9380 (2)	0.6147 (2)	0.0399 (9)
H27	-0.2386	0.9658	0.6572	0.048*
C28	-0.0368 (4)	0.9243 (2)	0.60561 (18)	0.0375 (9)
H28	0.0069	0.9443	0.6415	0.045*
C29	0.0450 (4)	0.8817 (2)	0.54447 (17)	0.0333 (8)
H29	0.1437	0.8724	0.5392	0.040*
C30	-0.0190 (4)	0.8520 (2)	0.48986 (17)	0.0280 (8)
C31	0.2156 (4)	0.7772 (2)	0.41706 (17)	0.0286 (8)
C32	0.3135 (4)	0.8064 (2)	0.35202 (18)	0.0311 (8)
C33	0.4568 (4)	0.7743 (2)	0.3383 (2)	0.0382 (9)
H33	0.5198	0.7952	0.2924	0.046*
C34	0.5044 (4)	0.7130 (2)	0.3912 (2)	0.0417 (9)
H34	0.6008	0.6924	0.3821	0.050*

C35	0.4116 (4)	0.6802 (2)	0.4595 (2)	0.0365 (9)
C36	0.4612 (5)	0.6162 (3)	0.5155 (2)	0.0511 (11)
H36	0.5588	0.5991	0.5082	0.061*
C37	0.3703 (6)	0.5799 (3)	0.5788 (2)	0.0527 (12)
H37	0.4040	0.5378	0.6154	0.063*
C38	0.2246 (5)	0.6055 (2)	0.5896 (2)	0.0493 (11)
H38	0.1609	0.5784	0.6330	0.059*
C39	0.1735 (4)	0.6688 (2)	0.53834 (18)	0.0386 (9)
H39	0.0756	0.6851	0.5474	0.046*
C40	0.2647 (4)	0.7099 (2)	0.47244 (18)	0.0314 (8)
N5	-0.0910 (4)	0.61714 (19)	0.00186 (15)	0.0356 (7)
Н5	-0.185 (4)	0.607 (2)	-0.0068 (19)	0.053*
N6	0.0366 (4)	0.8309 (2)	0.0474 (2)	0.0598 (11)
H6B	-0.052 (4)	0.867 (3)	0.048 (3)	0.090*
H6C	0.107 (6)	0.842 (3)	0.060 (3)	0.090*
C51	0.0114 (4)	0.5485 (2)	0.00753 (17)	0.0323 (8)
C52	0.1320 (4)	0.5762 (2)	0.02711 (19)	0.0408 (9)
H52	0.2071	0.5310	0.0308	0.049*
C53	-0.0831 (4)	0.7077 (2)	0.01407 (18)	0.0374 (9)
Н53	-0.1583	0.7520	0.0084	0.045*
C54	0.0332 (4)	0.7378 (2)	0.03484 (19)	0.0417 (9)
C55	0.1423 (4)	0.6689 (2)	0.0411 (2)	0.0435 (9)
H55	0.2237	0.6859	0.0550	0.052*
N1	0.8043 (3)	0.2825 (2)	0.15243 (15)	0.0362 (7)
H1	0.738 (4)	0.326 (2)	0.1374 (19)	0.054*
N2	0.7674 (3)	0.46415 (19)	0.17645 (15)	0.0390 (7)
N3	0.8985 (4)	0.0303 (2)	0.14736 (19)	0.0504 (9)
H3B	0.951 (5)	-0.015 (3)	0.169 (2)	0.076*
H3C	0.836 (5)	0.007 (3)	0.121 (2)	0.076*
N4	0.8107 (4)	0.7086 (2)	0.20931 (18)	0.0449 (8)
H4B	0.883 (5)	0.742 (3)	0.210 (2)	0.067*
H4C	0.745 (4)	0.742 (3)	0.181 (2)	0.067*
C41	0.8992 (4)	0.3158 (2)	0.18548 (18)	0.0354 (8)
C42	0.9989 (4)	0.2483 (2)	0.20719 (19)	0.0410 (9)
H42	1.0675	0.2676	0.2302	0.049*
C43	0.9982 (4)	0.1544 (2)	0.19537 (19)	0.0399 (9)
H43	1.0659	0.1102	0.2110	0.048*
C44	0.8984 (4)	0.1225 (2)	0.16032 (19)	0.0386 (9)
C45	0.7994 (4)	0.1913 (2)	0.13969 (19)	0.0374 (9)
H45	0.7293	0.1737	0.1169	0.045*
C46	0.8861 (4)	0.4183 (2)	0.19335 (18)	0.0350 (8)
C47	0.9849(4)	0 4665 (2)	0 21622 (19)	0.0431 (9)
H47	1 0661	0 4334	0 2279	0.052*
C48	0.9633 (4)	0.5637 (3)	0.22177 (19)	0.0438 (9)
H48	1.0299	0.5972	0.2371	0.053*
C49	0.8424 (4)	0.6115 (2)	0.20454 (18)	0.0383 (9)
C50	0 7481 (4)	0 5573 (2)	0 1819 (2)	0.0422 (9)
H50	0.6661	0 5888	0 1698	0.051*
09	0 5612 (3)	0 7794 (2)	0 13189 (16)	0.0515 (8)
<i></i>	0.0012 (0)	5.777 (2)	0.13107 (10)	0.0010 (0)

H9B	0.547 (5)	0.758 (3)	0.093 (3)	0.077*
H9C	0.471 (5)	0.787 (3)	0.155 (3)	0.077*
O10	0.7472 (3)	0.9282 (2)	0.05583 (17)	0.0573 (8)
H10A	0.718 (5)	0.973 (3)	0.018 (2)	0.086*
H10B	0.674 (5)	0.891 (3)	0.084 (3)	0.086*
O11	0.3160 (4)	0.9211 (2)	0.04676 (17)	0.0750 (10)
H11A	0.298 (7)	0.914 (4)	0.091 (3)	0.113*
H11B	0.386 (6)	0.880 (4)	0.025 (3)	0.113*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0350 (6)	0.0509 (6)	0.0303 (5)	-0.0097 (5)	-0.0106 (5)	-0.0004 (4)
01	0.0283 (15)	0.0428 (13)	0.0287 (12)	-0.0061 (11)	-0.0065 (11)	-0.0014 (10)
02	0.0252 (14)	0.0410 (12)	0.0327 (13)	-0.0064 (11)	-0.0069 (11)	-0.0031 (10)
O3	0.0499 (19)	0.0655 (17)	0.0447 (15)	-0.0162 (14)	0.0003 (14)	-0.0212 (13)
O4	0.0422 (18)	0.0667 (16)	0.0574 (16)	-0.0151 (14)	-0.0280 (15)	0.0194 (13)
C1	0.026 (2)	0.0312 (17)	0.0271 (17)	-0.0029 (15)	-0.0020 (16)	-0.0048 (14)
C2	0.025 (2)	0.0344 (18)	0.0288 (18)	-0.0005 (15)	-0.0065 (16)	-0.0029 (14)
C3	0.040 (2)	0.0388 (19)	0.0314 (19)	-0.0115 (17)	-0.0061 (18)	-0.0099 (15)
C4	0.042 (2)	0.0248 (16)	0.041 (2)	-0.0055 (16)	-0.0052 (19)	-0.0079 (15)
C5	0.031 (2)	0.0301 (17)	0.0308 (18)	-0.0018 (15)	-0.0034 (17)	-0.0024 (14)
C6	0.041 (2)	0.0291 (17)	0.049 (2)	0.0017 (17)	-0.010 (2)	-0.0052 (16)
C7	0.041 (3)	0.041 (2)	0.052 (2)	0.0053 (18)	-0.020 (2)	-0.0009 (17)
C8	0.045 (3)	0.040 (2)	0.048 (2)	0.0001 (18)	-0.027 (2)	-0.0055 (16)
C9	0.038 (2)	0.0320 (18)	0.0362 (19)	0.0016 (16)	-0.0127 (18)	-0.0063 (15)
C10	0.025 (2)	0.0283 (16)	0.0283 (18)	-0.0039 (14)	-0.0017 (16)	-0.0023 (13)
C11	0.027 (2)	0.0318 (17)	0.0332 (19)	-0.0049 (15)	-0.0119 (17)	-0.0015 (15)
C12	0.022 (2)	0.0377 (18)	0.0317 (19)	-0.0008 (15)	-0.0045 (16)	-0.0041 (15)
C13	0.035 (2)	0.0331 (18)	0.040 (2)	-0.0065 (16)	-0.0120 (18)	0.0046 (16)
C14	0.041 (2)	0.0267 (17)	0.050 (2)	-0.0053 (16)	-0.013 (2)	-0.0008 (16)
C15	0.029 (2)	0.0294 (17)	0.043 (2)	-0.0021 (15)	-0.0121 (18)	-0.0067 (15)
C16	0.042 (3)	0.0281 (17)	0.056 (2)	-0.0003 (17)	-0.013 (2)	-0.0131 (17)
C17	0.046 (3)	0.040 (2)	0.045 (2)	-0.0021 (18)	-0.004 (2)	-0.0179 (18)
C18	0.038 (2)	0.042 (2)	0.039 (2)	-0.0019 (17)	-0.0041 (19)	-0.0093 (16)
C19	0.037 (2)	0.0325 (18)	0.040 (2)	-0.0022 (16)	-0.0065 (18)	-0.0073 (16)
C20	0.031 (2)	0.0306 (17)	0.0340 (19)	-0.0009 (15)	-0.0119 (17)	-0.0038 (15)
P2	0.0438 (7)	0.0362 (5)	0.0303 (5)	-0.0028 (4)	-0.0073 (5)	-0.0013 (4)
05	0.0390 (16)	0.0327 (12)	0.0299 (12)	-0.0019 (11)	-0.0033 (12)	-0.0093 (10)
O6	0.0426 (16)	0.0315 (12)	0.0305 (12)	-0.0063 (11)	-0.0058 (12)	-0.0001 (10)
07	0.0531 (19)	0.0622 (16)	0.0335 (14)	-0.0117 (13)	0.0089 (13)	-0.0198 (12)
08	0.073 (2)	0.0460 (15)	0.0757 (19)	0.0024 (14)	-0.0383 (18)	0.0118 (13)
C21	0.028 (2)	0.0295 (16)	0.0271 (18)	-0.0028 (15)	-0.0041 (16)	-0.0021 (14)
C22	0.030 (2)	0.0299 (17)	0.0287 (18)	-0.0015 (15)	-0.0017 (17)	-0.0061 (14)
C23	0.035 (2)	0.0379 (19)	0.034 (2)	-0.0037 (17)	-0.0120 (18)	-0.0040 (15)
C24	0.028 (2)	0.0383 (19)	0.043 (2)	0.0025 (16)	-0.0074 (19)	-0.0049 (16)
C25	0.032 (2)	0.0264 (17)	0.0321 (19)	-0.0040 (15)	0.0027 (17)	-0.0012 (14)
C26	0.036(2)	0.0311 (18)	0.041 (2)	-0.0012(16)	0.0020(19)	-0.0003 (16)

C27	0.041 (3)	0.0359 (19)	0.037 (2)	-0.0047 (17)	0.0067 (19)	-0.0100 (16)
C28	0.049 (3)	0.0351 (18)	0.0276 (19)	-0.0079 (17)	-0.0031 (18)	-0.0085 (15)
C29	0.036 (2)	0.0316 (17)	0.0339 (19)	0.0014 (16)	-0.0116 (18)	-0.0067 (14)
C30	0.030 (2)	0.0238 (16)	0.0272 (18)	-0.0020 (14)	-0.0003 (16)	-0.0044 (13)
C31	0.031 (2)	0.0269 (16)	0.0306 (18)	-0.0024 (15)	-0.0094 (17)	-0.0094 (14)
C32	0.033 (2)	0.0304 (17)	0.0310 (19)	-0.0046 (16)	-0.0080 (18)	-0.0061 (14)
C33	0.032 (2)	0.0375 (19)	0.045 (2)	-0.0062 (17)	-0.0016 (19)	-0.0120 (16)
C34	0.029 (2)	0.044 (2)	0.057 (2)	0.0032 (17)	-0.015 (2)	-0.0180 (18)
C35	0.041 (2)	0.0311 (18)	0.043 (2)	-0.0008 (17)	-0.015 (2)	-0.0155 (16)
C36	0.058 (3)	0.044 (2)	0.062 (3)	0.012 (2)	-0.035 (3)	-0.016 (2)
C37	0.083 (4)	0.038 (2)	0.046 (2)	0.014 (2)	-0.034 (3)	-0.0069 (18)
C38	0.077 (4)	0.0344 (19)	0.034 (2)	0.001 (2)	-0.010 (2)	-0.0041 (16)
C39	0.046 (3)	0.0368 (19)	0.034 (2)	0.0005 (18)	-0.0095 (19)	-0.0091 (16)
C40	0.038 (2)	0.0281 (17)	0.0313 (19)	-0.0034 (16)	-0.0104 (18)	-0.0091 (14)
N5	0.036 (2)	0.0374 (16)	0.0349 (16)	-0.0057 (15)	-0.0100 (15)	-0.0039 (13)
N6	0.050 (3)	0.049 (2)	0.084 (3)	-0.0069 (18)	-0.013 (2)	-0.0250 (19)
C51	0.031 (2)	0.0375 (18)	0.0270 (18)	-0.0064 (16)	-0.0027 (16)	-0.0028 (14)
C52	0.033 (2)	0.044 (2)	0.047 (2)	-0.0038 (17)	-0.0092 (19)	-0.0076 (17)
C53	0.039 (2)	0.038 (2)	0.034 (2)	-0.0024 (17)	-0.0057 (18)	-0.0051 (15)
C54	0.040 (3)	0.042 (2)	0.041 (2)	-0.0120 (18)	0.0005 (19)	-0.0093 (16)
C55	0.034 (2)	0.050 (2)	0.049 (2)	-0.0087 (19)	-0.007 (2)	-0.0136 (18)
N1	0.0306 (19)	0.0391 (17)	0.0387 (17)	-0.0014 (14)	-0.0097 (15)	-0.0007 (13)
N2	0.033 (2)	0.0403 (17)	0.0443 (18)	-0.0010 (14)	-0.0104 (16)	-0.0060 (13)
N3	0.051 (2)	0.0400 (19)	0.063 (2)	0.0045 (16)	-0.0210 (19)	-0.0071 (16)
N4	0.041 (2)	0.0436 (19)	0.052 (2)	-0.0053 (15)	-0.0072 (18)	-0.0182 (15)
C41	0.032 (2)	0.0420 (19)	0.0311 (19)	-0.0027 (17)	-0.0072 (18)	0.0008 (15)
C42	0.034 (2)	0.050 (2)	0.038 (2)	-0.0044 (18)	-0.0091 (19)	0.0019 (17)
C43	0.036 (2)	0.044 (2)	0.038 (2)	0.0050 (18)	-0.0098 (19)	0.0018 (16)
C44	0.030 (2)	0.046 (2)	0.037 (2)	-0.0005 (18)	-0.0057 (18)	0.0000 (16)
C45	0.030 (2)	0.043 (2)	0.039 (2)	-0.0024 (17)	-0.0080 (18)	-0.0022 (16)
C46	0.032 (2)	0.044 (2)	0.0286 (18)	-0.0074 (17)	-0.0049 (17)	-0.0015 (15)
C47	0.036 (2)	0.050 (2)	0.046 (2)	-0.0046 (19)	-0.014 (2)	-0.0046 (17)
C48	0.038 (3)	0.055 (2)	0.041 (2)	-0.0087 (19)	-0.0097 (19)	-0.0112 (17)
C49	0.039 (2)	0.044 (2)	0.0294 (19)	-0.0045 (18)	-0.0013 (18)	-0.0090 (15)
C50	0.037 (2)	0.044 (2)	0.048 (2)	-0.0004 (18)	-0.013 (2)	-0.0095 (17)
09	0.0481 (19)	0.0677 (18)	0.0424 (17)	-0.0006 (16)	-0.0129 (15)	-0.0161 (13)
O10	0.055 (2)	0.0572 (18)	0.0596 (19)	-0.0041 (15)	-0.0156 (17)	0.0004 (14)
011	0.083 (3)	0.086 (2)	0.0466 (18)	0.0059 (18)	-0.008 (2)	0.0079 (17)
Geometric n	arameters (Å. °)					
		1 4(2 (2)	C 20	1120	0.04	00
P1-03		1.405 (3)	C29-	-H29	0.94	00 2 (5)
P104		1.485 (2)	C31-	-C32	1.37	2 (5)
P101		1.003(2)	C31-	-C40	1.43	9 (4) 2 (5)
P1 = 02		1.012(2)	C32-	-033	1.40	2 (3) 6 (5)
01 - 02		1.406 (3)	C33-	-0.34	1.30	0(5)
C1 C2		1.405 (4)	C33-	-1133	0.94	1 (5)
C1 - C2		1.3/3(4)	C34-	-C33 H24	1.40	00
CI = CIU		1.430 (4)	034-	-1134	0.94	00

C1—C11	1.498 (4)	C35—C36	1.425 (5)
C2—C3	1.403 (4)	C35—C40	1.427 (5)
С3—С4	1.359 (4)	C36—C37	1.346 (6)
С3—НЗА	0.9400	С36—Н36	0.9400
C4—C5	1.412 (4)	C37—C38	1.404 (6)
C4—H4A	0.9400	С37—Н37	0.9400
C5—C6	1.414 (4)	C38—C39	1.366 (4)
C5—C10	1.426 (4)	С38—Н38	0.9400
C6—C7	1.352 (5)	C39—C40	1.402 (5)
С6—Н6А	0.9400	С39—Н39	0.9400
С7—С8	1.411 (5)	N5—C53	1.333 (4)
С7—Н7	0.9400	N5—C51	1.345 (4)
C8—C9	1.362 (4)	N5—H5	0.98 (4)
С8—Н8	0.9400	N6—C54	1.364 (5)
C9—C10	1.415 (4)	N6—H6B	0.96 (4)
С9—Н9А	0.9400	N6—H6C	0.81 (5)
C11—C12	1.359 (4)	C51—C52	1.397 (5)
C11—C20	1.433 (4)	C51—C51 ⁱ	1.472 (6)
C12—C13	1.402 (4)	C52—C55	1.377 (5)
C13—C14	1.349 (5)	С52—Н52	0.9400
С13—Н13	0.9400	C53—C54	1.384 (5)
C14—C15	1.406 (5)	С53—Н53	0.9400
C14—H14	0.9400	C54—C55	1.397 (5)
C15—C16	1.407 (5)	С55—Н55	0.9400
C15—C20	1.420 (4)	N1—C45	1.342 (4)
C16—C17	1.356 (5)	N1—C41	1.353 (4)
С16—Н16	0.9400	N1—H1	0.92 (4)
C17—C18	1.401 (5)	N2—C50	1.324 (4)
C17—H17	0.9400	N2C46	1.358 (4)
C18—C19	1.365 (5)	N3—C44	1.350 (4)
C18—H18	0.9400	N3—H3B	0.90 (4)
C19—C20	1.416 (5)	N3—H3C	0.96 (4)
C19—H19	0.9400	N4—C49	1.389 (4)
P2—O8	1.467 (2)	N4—H4B	0.87 (4)
P2—O7	1.475 (3)	N4—H4C	0.97 (3)
P2—O5	1.612 (2)	C41—C42	1.395 (4)
P2—O6	1.615 (2)	C41—C46	1.464 (5)
O5—C22	1.397 (4)	C42—C43	1.368 (5)
O6—C32	1.388 (3)	C42—H42	0.9400
C21—C22	1.377 (4)	C43—C44	1.408 (5)
C21—C30	1.434 (4)	C43—H43	0.9400
C21—C31	1.491 (5)	C44—C45	1.394 (5)
C22—C23	1.397 (5)	C45—H45	0.9400
C23—C24	1.354 (5)	C46—C47	1.383 (5)
C23—H23	0.9400	C47—C48	1.383 (5)
C24—C25	1.417 (5)	C47—H47	0.9400
C24—H24	0.9400	C48—C49	1.389 (5)
C25—C26	1.406 (5)	C48—H48	0.9400
C25—C30	1.430 (5)	C49—C50	1.399 (5)

C26—C27	1.363 (5)	С50—Н50	0.9400
С26—Н26	0.9400	O9—H9B	0.85 (4)
C27—C28	1.395 (5)	О9—Н9С	0.88 (5)
С27—Н27	0.9400	O10—H10A	0.96 (4)
C28—C29	1.380 (5)	O10—H10B	0.93 (5)
C28—H28	0.9400	O11—H11A	0.78 (5)
C29—C30	1.411 (4)	O11—H11B	0.91 (6)
O3—P1—O4	119.31 (15)	C28—C29—C30	120.3 (4)
O3—P1—O1	111.34 (14)	С28—С29—Н29	119.9
O4—P1—O1	105.91 (15)	С30—С29—Н29	119.9
O3—P1—O2	106.68 (14)	C29—C30—C25	118.9 (3)
O4—P1—O2	110.01 (14)	C29—C30—C21	121.8 (3)
O1—P1—O2	102.33 (12)	C25—C30—C21	119.3 (3)
C2—O1—P1	115.4 (2)	C32—C31—C40	117.4 (3)
C12—O2—P1	115.8 (2)	C32—C31—C21	119.7 (3)
C2C1C10	117.6 (3)	C40—C31—C21	122.7 (3)
C2—C1—C11	119.2 (3)	C31—C32—O6	118.7 (3)
C10-C1-C11	123.0 (3)	C31—C32—C33	122.9 (3)
C1—C2—C3	123.3 (3)	O6—C32—C33	118.4 (3)
C1—C2—O1	118.8 (3)	C34—C33—C32	119.8 (3)
C3—C2—O1	117.9 (3)	С34—С33—Н33	120.1
C4—C3—C2	118.9 (3)	С32—С33—Н33	120.1
С4—С3—НЗА	120.5	C33—C34—C35	120.8 (3)
С2—С3—НЗА	120.5	С33—С34—Н34	119.6
C3—C4—C5	121.5 (3)	С35—С34—Н34	119.6
C3—C4—H4A	119.2	C34—C35—C36	121.1 (4)
С5—С4—Н4А	119.2	C34—C35—C40	119.4 (3)
C4—C5—C6	122.4 (3)	C36—C35—C40	119.5 (4)
C4—C5—C10	118.8 (3)	C37—C36—C35	120.9 (4)
C6—C5—C10	118.8 (3)	С37—С36—Н36	119.6
C7—C6—C5	121.5 (3)	С35—С36—Н36	119.6
С7—С6—Н6А	119.2	C36—C37—C38	119.5 (3)
С5—С6—Н6А	119.2	С36—С37—Н37	120.3
C6—C7—C8	120.2 (3)	С38—С37—Н37	120.3
С6—С7—Н7	119.9	C39—C38—C37	121.4 (4)
С8—С7—Н7	119.9	С39—С38—Н38	119.3
C9—C8—C7	119.8 (3)	С37—С38—Н38	119.3
С9—С8—Н8	120.1	C38—C39—C40	121.1 (4)
С7—С8—Н8	120.1	С38—С39—Н39	119.5
C8—C9—C10	121.8 (3)	С40—С39—Н39	119.5
С8—С9—Н9А	119.1	C39—C40—C35	117.5 (3)
С10—С9—Н9А	119.1	C39—C40—C31	123.0 (3)
C9—C10—C5	117.8 (3)	C35—C40—C31	119.4 (3)
C9—C10—C1	122.3 (3)	C53—N5—C51	123.8 (3)
C5—C10—C1	119.7 (3)	C53—N5—H5	110 (2)
C12—C11—C20	117.4 (3)	C51—N5—H5	126 (2)
C12—C11—C1	119.0 (3)	C54—N6—H6B	114 (3)
C20—C11—C1	123.6 (3)	C54—N6—H6C	113 (4)
C11—C12—C13	123.9 (3)	H6B—N6—H6C	132 (5)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—O2	117.8 (3)	N5-C51-C52	116.5 (3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C13—C12—O2	118.2 (3)	N5-C51-C51 ⁱ	118.1 (4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C14—C13—C12	119.1 (3)	C52—C51—C51 ⁱ	125.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С14—С13—Н13	120.4	C55—C52—C51	120.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С12—С13—Н13	120.4	С55—С52—Н52	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—C15	120.6 (3)	С51—С52—Н52	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—H14	119.7	N5	121.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C14—H14	119.7	N5—C53—H53	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16	121.2 (3)	С54—С53—Н53	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C20	120.0 (3)	N6—C54—C53	119.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C15—C20	118.8 (3)	N6—C54—C55	123.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C16—C15	121.5 (3)	C53—C54—C55	116.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С17—С16—Н16	119.2	C52—C55—C54	120.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С15—С16—Н16	119.2	С52—С55—Н55	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C17—C18	119.7 (3)	С54—С55—Н55	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С16—С17—Н17	120.1	C45—N1—C41	125.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С18—С17—Н17	120.1	C45—N1—H1	118 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C18—C17	120.9 (3)	C41—N1—H1	117 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C18—H18	119.5	C50—N2—C46	118.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C18—H18	119.5	C44—N3—H3B	120 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—C19—C20	120.4 (3)	C44—N3—H3C	124 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С18—С19—Н19	119.8	H3B—N3—H3C	115 (4)
C19—C20—C15118.4 (3)C49—N4—H4C119 (2)C19—C20—C11122.6 (3)H4B—N4—H4C114 (4)C15—C20—C11118.9 (3)N1—C41—C42116.0 (3)08—P2—O7119.53 (16)N1—C41—C46116.2 (3)08—P2—O5112.15 (16)C42—C41—C46127.7 (3)07—P2—O5105.55 (14)C43—C42—C41120.9 (3)08—P2—O6106.54 (14)C43—C42—H42119.607—P2—O6109.94 (15)C41—C42—H42119.605—P2—O6101.72 (12)C42—C43—C44121.5 (3)C22—O5—P2118.05 (19)C42—C43—H43119.2C32—O6—P2120.11 (19)C44—C43—H43119.2C22—C21—C30117.2 (3)N3—C44—C43121.9 (3)C30—C21—C31120.1 (3)N3—C44—C43120.0 (3)C21—C22—C23123.2 (3)N1—C45—H45120.0C23—C22—O5119.6 (3)N1—C45—H45120.0C24—C23—H23120.1N2—C46—C41114.6 (3)C22—C23—H23120.1C47—C46—C41114.6 (3)C23—C24—H24119.7C48—C47—H47120.2C25—C24—H24119.7C48—C47—H47120.2C25—C24—H24119.7C48—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24	С20—С19—Н19	119.8	C49—N4—H4B	115 (3)
C19—C20—C11122.6 (3)H4B—N4—H4C114 (4)C15—C20—C11118.9 (3)N1—C41—C42116.0 (3)O8—P2—O7119.53 (16)N1—C41—C46116.2 (3)O8—P2—O5112.15 (16)C42—C41—C46127.7 (3)O7—P2—O5105.55 (14)C43—C42—C41120.9 (3)O8—P2—O6106.54 (14)C43—C42—H42119.6O7—P2—O6109.94 (15)C41—C42—H42119.6O5—P2—O6101.72 (12)C42—C43—C44121.5 (3)C22—O5—P2118.05 (19)C44—C43—H43119.2C32—O6—P2120.11 (19)C44—C43—H43119.2C22—C21—C30117.2 (3)N3—C44—C43121.9 (3)C30—C21—C31122.7 (3)C45—C44120.0 (3)C21—C22—O5119.6 (3)N1—C45—H45120.0C23—C22—O5117.2 (3)C44—C45—H45120.0C24—C23—H23120.1N2—C46—C41114.6 (3)C22—C23—H23120.1N2—C46—C41114.6 (3)C23—C24—H24119.7C48—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C25—C24—H24119.7 <td>C19—C20—C15</td> <td>118.4 (3)</td> <td>C49—N4—H4C</td> <td>119 (2)</td>	C19—C20—C15	118.4 (3)	C49—N4—H4C	119 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C20—C11	122.6 (3)	H4B—N4—H4C	114 (4)
08-P2-07 119.53 (16) $N1-C41-C46$ 116.2 (3) $08-P2-05$ 112.15 (16) $C42-C41-C46$ 127.7 (3) $07-P2-05$ 105.55 (14) $C43-C42-C41$ 120.9 (3) $08-P2-06$ 106.54 (14) $C43-C42-H42$ 119.6 $07-P2-06$ 109.94 (15) $C41-C42-H42$ 119.6 $05-P2-06$ 101.72 (12) $C42-C43-C44$ 121.5 (3) $C22-05-P2$ 118.05 (19) $C42-C43-H43$ 119.2 $C32-06-P2$ 120.11 (19) $C44-C43$ -H43 119.2 $C22-C21-C30$ 117.2 (3) $N3-C44-C45$ 121.8 (4) $C22-C21-C31$ 120.1 (3) $N3-C44-C43$ 121.9 (3) $C30-C21-C31$ 122.7 (3) $C45-C44-C43$ 116.4 (3) $C21-C22-C23$ 123.2 (3) $N1-C45-C44$ 120.0 (3) $C23-C22-O5$ 117.2 (3) $C44-C45-H45$ 120.0 $C23-C22-O5$ 117.2 (3) $C44-C45-H45$ 120.0 $C24-C23-L23$ 120.1 $N2-C46-C47$ 121.5 (3) $C24-C23-H23$ 120.1 $N2-C46-C41$ 114.6 (3) $C22-C23-H23$ 120.1 $N2-C46-C41$ 123.8 (3) $C23-C24-L25$ 120.6 (3) $C48-C47-C46$ 119.6 (3) $C23-C24-H24$ 119.7 $C48-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2	C15—C20—C11	118.9 (3)	N1-C41-C42	116.0 (3)
08-P2-05 $112.15(16)$ $C42-C41-C46$ $127.7(3)$ $07-P2-05$ $105.55(14)$ $C43-C42-C41$ $120.9(3)$ $08-P2-06$ $106.54(14)$ $C43-C42-H42$ 119.6 $07-P2-06$ $109.94(15)$ $C41-C42-H42$ 119.6 $05-P2-06$ $101.72(12)$ $C42-C43-C44$ $121.5(3)$ $C22-05-P2$ $118.05(19)$ $C42-C43-H43$ 119.2 $C32-06-P2$ $120.11(19)$ $C44-C43-H43$ 119.2 $C22-C21-C30$ $117.2(3)$ $N3-C44-C45$ $121.8(4)$ $C22-C21-C31$ $120.1(3)$ $N3-C44-C43$ $116.4(3)$ $C21-C22-C23$ $123.2(3)$ $N1-C45-C44$ $120.0(3)$ $C21-C22-C55$ $119.6(3)$ $N1-C45-H45$ 120.0 $C23-C22-05$ $117.2(3)$ $C44-C45-H45$ 120.0 $C24-C23-C22$ $119.8(3)$ $N2-C46-C47$ $121.5(3)$ $C24-C23-H23$ 120.1 $N2-C46-C41$ $114.6(3)$ $C22-C23-H23$ 120.1 $C47-C46-C41$ $123.8(3)$ $C23-C24-H24$ 119.7 $C48-C47-H47$ 120.2 $C23-C24-H24$ 119.7 $C48-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ <t< td=""><td>O8—P2—O7</td><td>119.53 (16)</td><td>N1-C41-C46</td><td>116.2 (3)</td></t<>	O8—P2—O7	119.53 (16)	N1-C41-C46	116.2 (3)
07-P2-05 $105.55(14)$ $C43-C42-C41$ $120.9(3)$ $08-P2-06$ $106.54(14)$ $C43-C42-H42$ 119.6 $07-P2-06$ $109.94(15)$ $C41-C42-H42$ 119.6 $05-P2-06$ $101.72(12)$ $C42-C43-C44$ $121.5(3)$ $C22-05-P2$ $118.05(19)$ $C42-C43-H43$ 119.2 $C32-06-P2$ $120.11(19)$ $C44-C43-H43$ 119.2 $C22-C21-C30$ $117.2(3)$ $N3-C44-C45$ $121.8(4)$ $C22-C21-C31$ $120.1(3)$ $N3-C44-C43$ $116.4(3)$ $C21-C22-C23$ $123.2(3)$ $N1-C45-C44$ $120.0(3)$ $C21-C22-C23$ $123.2(3)$ $N1-C45-H45$ 120.0 $C23-C22-O5$ $117.2(3)$ $C44-C45-H45$ 120.0 $C24-C23-C22$ $119.8(3)$ $N2-C46-C47$ $121.5(3)$ $C24-C23-H23$ 120.1 $N2-C46-C41$ $114.6(3)$ $C22-C23-H23$ 120.1 $C47-C46-C41$ $123.8(3)$ $C22-C23-H23$ 120.1 $C47-C46-C41$ $123.8(3)$ $C23-C24-H24$ 119.7 $C48-C47-H47$ 120.2 $C23-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C26-C25-C24$ $122.2(3)$ $C47-C48-C49$ $119.5(4)$	O8—P2—O5	112.15 (16)	C42—C41—C46	127.7 (3)
08-P2-06 $106.54(14)$ $C43-C42-H42$ 119.6 $07-P2-06$ $109.94(15)$ $C41-C42-H42$ 119.6 $05-P2-06$ $101.72(12)$ $C42-C43-C44$ $121.5(3)$ $C22-05-P2$ $118.05(19)$ $C42-C43-H43$ 119.2 $C32-06-P2$ $120.11(19)$ $C44-C43-H43$ 119.2 $C22-C21-C30$ $117.2(3)$ $N3-C44-C45$ $121.8(4)$ $C22-C21-C31$ $120.1(3)$ $N3-C44-C43$ $121.9(3)$ $C30-C21-C31$ $122.7(3)$ $C45-C44-C43$ $116.4(3)$ $C21-C22-C23$ $123.2(3)$ $N1-C45-C44$ $120.0(3)$ $C23-C22-O5$ $119.6(3)$ $N1-C45-H45$ 120.0 $C24-C23-C22$ $119.8(3)$ $N2-C46-C47$ $121.5(3)$ $C24-C23-H23$ 120.1 $N2-C46-C41$ $114.6(3)$ $C22-C23-H23$ 120.1 $N2-C46-C41$ $119.6(3)$ $C23-C24-C25$ $120.6(3)$ $C48-C47-C46$ $119.6(3)$ $C23-C24-H24$ 119.7 $C48-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C26-C25-C24$ $122.2(3)$ $C47-C48-C49$ $119.5(4)$	O7—P2—O5	105.55 (14)	C43—C42—C41	120.9 (3)
07-P2-06 $109.94 (15)$ $C41-C42-H42$ 119.6 $05-P2-06$ $101.72 (12)$ $C42-C43-C44$ $121.5 (3)$ $C22-05-P2$ $118.05 (19)$ $C42-C43-H43$ 119.2 $C32-06-P2$ $120.11 (19)$ $C44-C43-H43$ 119.2 $C22-C21-C30$ $117.2 (3)$ $N3-C44-C45$ $121.8 (4)$ $C22-C21-C31$ $120.1 (3)$ $N3-C44-C43$ $121.9 (3)$ $C30-C21-C31$ $122.7 (3)$ $C45-C44-C43$ $116.4 (3)$ $C21-C22-C23$ $123.2 (3)$ $N1-C45-C44$ $120.0 (3)$ $C23-C22-O5$ $119.6 (3)$ $N1-C45-H45$ 120.0 $C24-C23-C22$ $119.8 (3)$ $N2-C46-C47$ $121.5 (3)$ $C24-C23-H23$ 120.1 $N2-C46-C41$ $114.6 (3)$ $C22-C24-H24$ 119.7 $C48-C47-H47$ 120.2 $C23-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ $122.2 (3)$ $C47-C48-C49$ $119.5 (4)$	O8—P2—O6	106.54 (14)	C43—C42—H42	119.6
05-P2-O6 $101.72 (12)$ $C42-C43-C44$ $121.5 (3)$ $C22-O5-P2$ $118.05 (19)$ $C42-C43-H43$ 119.2 $C32-O6-P2$ $120.11 (19)$ $C44-C43-H43$ 119.2 $C22-C21-C30$ $117.2 (3)$ $N3-C44-C45$ $121.8 (4)$ $C22-C21-C31$ $120.1 (3)$ $N3-C44-C43$ $121.9 (3)$ $C30-C21-C31$ $122.7 (3)$ $C45-C44-C43$ $116.4 (3)$ $C21-C22-C23$ $123.2 (3)$ $N1-C45-C44$ $120.0 (3)$ $C23-C22-O5$ $119.6 (3)$ $N1-C45-H45$ 120.0 $C24-C23-C22$ $119.8 (3)$ $N2-C46-C47$ $121.5 (3)$ $C24-C23-H23$ 120.1 $N2-C46-C41$ $114.6 (3)$ $C22-C23-H23$ 120.1 $C47-C46-C41$ $123.8 (3)$ $C23-C24-C25$ $120.6 (3)$ $C48-C47-C46$ $119.6 (3)$ $C23-C24-H24$ 119.7 $C48-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C25-C24-H24$ 119.7 $C46-C47-H47$ 120.2 $C26-C25-C24$ $122.2 (3)$ $C47-C48-C49$ $119.5 (4)$	O7—P2—O6	109.94 (15)	C41—C42—H42	119.6
C2205P2118.05 (19)C42C43H43119.2C3206P2120.11 (19)C44C43H43119.2C22C21C30117.2 (3)N3C44C45121.8 (4)C22C21C31120.1 (3)N3C44C43121.9 (3)C30C21C31122.7 (3)C45C44C43116.4 (3)C21C22C23123.2 (3)N1C45C44120.0 (3)C21C22O5119.6 (3)N1C45H45120.0C24C23C22119.8 (3)N2C46C47121.5 (3)C24C23H23120.1N2C46C41114.6 (3)C23C24H24120.1C47C46C41123.8 (3)C23C24H24119.7C48C47H47120.2C25C24H24119.7C46C47H47120.2C26C25C24122.2 (3)C47C48C49119.5 (4)	O5—P2—O6	101.72 (12)	C42—C43—C44	121.5 (3)
C3206P2120.11 (19)C44C43H43119.2C22C21C30117.2 (3)N3C44C45121.8 (4)C22C21C31120.1 (3)N3C44C43121.9 (3)C30C21C31122.7 (3)C45C44C43116.4 (3)C21C22C23123.2 (3)N1C45C44120.0 (3)C23C22O5119.6 (3)N1C45H45120.0C24C23C22119.8 (3)N2C46C47121.5 (3)C24C23H23120.1N2C46C41114.6 (3)C22C23H23120.1C48C47C46119.6 (3)C23C24H24119.7C48C47H47120.2C25C24H24119.7C46C47H47120.2C25C24H24119.7C46C47H47120.2C25C24H24119.7C46C47H47120.2C25C24H24119.7C46C47H47120.2C25C24H24119.7C46C47H47120.2C25C24H24119.7C46C47H47120.2C25C24H24119.7C46C47H47120.2C25C24H24119.7C46C47H47120.2C26C25C24122.2 (3)C47C48C49119.5 (4)	C22—O5—P2	118.05 (19)	C42—C43—H43	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32—O6—P2	120.11 (19)	C44—C43—H43	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C21—C30	117.2 (3)	N3—C44—C45	121.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C21—C31	120.1 (3)	N3—C44—C43	121.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30—C21—C31	122.7 (3)	C45—C44—C43	116.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—C22—C23	123.2 (3)	N1—C45—C44	120.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—C22—O5	119.6 (3)	N1—C45—H45	120.0
C24—C23—C22 119.8 (3) N2—C46—C47 121.5 (3) C24—C23—H23 120.1 N2—C46—C41 114.6 (3) C22—C23—H23 120.1 C47—C46—C41 123.8 (3) C23—C24—C25 120.6 (3) C48—C47—C46 119.6 (3) C23—C24—H24 119.7 C48—C47—H47 120.2 C25—C24—H24 119.7 C46—C47—H47 120.2 C26—C25—C24 122.2 (3) C47—C48—C49 119.5 (4)	C23—C22—O5	117.2 (3)	C44—C45—H45	120.0
C24—C23—H23120.1N2—C46—C41114.6 (3)C22—C23—H23120.1C47—C46—C41123.8 (3)C23—C24—C25120.6 (3)C48—C47—C46119.6 (3)C23—C24—H24119.7C48—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C26—C25—C24122.2 (3)C47—C48—C49119.5 (4)	C24—C23—C22	119.8 (3)	N2-C46-C47	121.5 (3)
C22—C23—H23120.1C47—C46—C41123.8 (3)C23—C24—C25120.6 (3)C48—C47—C46119.6 (3)C23—C24—H24119.7C48—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C26—C25—C24122.2 (3)C47—C48—C49119.5 (4)	С24—С23—Н23	120.1	N2-C46-C41	114.6 (3)
C23-C24-C25120.6 (3)C48-C47-C46119.6 (3)C23-C24-H24119.7C48-C47-H47120.2C25-C24-H24119.7C46-C47-H47120.2C26-C25-C24122.2 (3)C47-C48-C49119.5 (4)	С22—С23—Н23	120.1	C47—C46—C41	123.8 (3)
C23—C24—H24119.7C48—C47—H47120.2C25—C24—H24119.7C46—C47—H47120.2C26—C25—C24122.2 (3)C47—C48—C49119.5 (4)	C23—C24—C25	120.6 (3)	C48—C47—C46	119.6 (3)
C25C24H24119.7C46C47H47120.2C26C25C24122.2 (3)C47C48C49119.5 (4)	C23—C24—H24	119.7	C48—C47—H47	120.2
C26-C25-C24 122.2 (3) C47-C48-C49 119.5 (4)	C25—C24—H24	119.7	C46—C47—H47	120.2
	C26—C25—C24	122.2 (3)	C47—C48—C49	119.5 (4)
C26—C25—C30 118.5 (3) C47—C48—H48 120.3	C26—C25—C30	118.5 (3)	C47—C48—H48	120.3

C24—C25—C30	119.2 (3)	C49—C48—H48	120.3
C27—C26—C25	121.5 (4)	C48—C49—N4	123.6 (3)
С27—С26—Н26	119.3	C48—C49—C50	117.2 (3)
С25—С26—Н26	119.3	N4—C49—C50	119.2 (3)
C26—C27—C28	120.1 (3)	N2—C50—C49	123.9 (3)
С26—С27—Н27	119.9	N2—C50—H50	118.0
С28—С27—Н27	119.9	C49—C50—H50	118.0
C29—C28—C27	120.7 (3)	Н9В—О9—Н9С	97 (4)
C29—C28—H28	119.7	H10A—O10—H10B	112 (4)
C27—C28—H28	119.7	H11A—O11—H11B	113 (5)
Symmetry codes: (i) $-x, -y+1, -z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O2	0.92 (4)	2.33 (4)	3.172 (4)	151 (3)
N3—H3B···O8 ⁱⁱ	0.90 (4)	1.97 (4)	2.830 (4)	161 (4)
N3—H3C···O10 ⁱⁱⁱ	0.96 (4)	2.08 (5)	3.016 (5)	164 (4)
N4—H4C…O9	0.97 (3)	2.18 (4)	3.124 (5)	163 (4)
N5—H5····O4 ⁱ	0.98 (4)	1.61 (4)	2.581 (4)	167 (3)
N6—H6B…O10 ^{iv}	0.96 (4)	2.05 (4)	3.006 (5)	173 (4)
N6—H6C…O11	0.81 (5)	2.34 (5)	3.078 (6)	153 (5)
O9—H9B…O3 ^v	0.85 (4)	2.06 (4)	2.875 (4)	159 (4)
O9—H9C…O7	0.88 (5)	1.89 (5)	2.753 (4)	164 (4)
O10—H10A…O11 ^{vi}	0.96 (4)	1.85 (4)	2.787 (4)	166 (4)
O10—H10B…O9	0.93 (5)	1.98 (5)	2.874 (4)	162 (4)
O11—H11B···O3 ^v	0.91 (6)	1.99 (5)	2.817 (4)	151 (5)
O11—H11A···O7	0.78 (5)	2.44 (5)	3.046 (4)	136 (5)
O11—H11A…O8	0.78 (5)	2.59 (6)	3.264 (5)	147 (6)
	(1)	1 () 1		

Symmetry codes: (ii) x+1, y-1, z; (iii) x, y-1, z; (i) -x, -y+1, -z; (iv) x-1, y, z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+2, -z.

